Nanopore/electrode structures for single-molecule biosensing

Dr Tim Albrecht
Imperial College London
Department of Chemistry & London Centre for Nanotechnology
South Kensington Campus
London
t.albrecht@imperial.ac.uk
• Introduction
• Nanopore Labs @ Imperial: Background
• Fabrication and structures
• Optical readout vs. electric readout
• Examples: Electrode/nanopore architectures
• Some perspectives
Introduction

Molecular Electronics

Solid-State Nanopores

Protein and Enzyme Electrochemistry

Ionic Liquids at Electrochemical Interfaces

(www.dbu.de)
Molecular Electronics

small transition metal complexes

redox-modified oligonucleotides

tunnelling spectroscopy in ionic liquids

nanoparticles and multiple charge states
Charge transport in electrochemical environments

- Electronic level distribution at the interface: BEEM (Chandrasekhar Natarajan, IMRE/Singapore)
- Charge transport calculations (Robert Stadler, Vienna)

Small nanoparticles and Coulomb charging

Au_{145} on Pt(111), 0.1 M NaClO$_4$

- $\Delta V(\text{DPV}) = 0.15 \text{ V}, C = 1.08 \text{ aF}$
- $\Delta V(I_t(\eta)) = 0.19 \text{ V}, C = 0.86 \text{ aF}$
- Conductance $G(j) = 2-6 \text{ nS}$
- Consistent with $I_t(V_{\text{bias}})$ and $I_t(z)$ data

Dr Joshua Edel / Dr Tim Albrecht (Chemistry & IBE) since 2006

Group Members:
Mariam Ayub
Alex Ivanov
Michael Cecchini
Guillaume Chansin
Dr Emanuele Instuli
Dr Catriona McGilvery
Dr Jongin Hong

Collaborators:
David McComb (Imperial, Materials)
Geoff Baldwin (Imperial, Bio)
MinJun Kim (Drexel)
Phil Bartlett (Southampton)
Tony Cass (Imperial, IBE)
Robin Leatherbarrow (Imperial, Chemistry)
Andrew de Mello (Imperial, Chemistry)
Per Jemth (Uppsala)

Wellcome Trust, HSFP, Corrigan
We are working towards the integration of solid-state nanopores with electrode structures: “Electrode/nanopore architectures”.

- Local gating of ion or biopolymer transport (sieving, sorting)
- Surface modification and specificity
- Translocation control by time-dependent gate fields (sensing)
- Introducing pore functionality (e.g. for optical detection)
Solid-state nanopores: Device fabrication

1. Low-pressure chemical vapor deposition
2. 100nm - 250nm Si$_3$N$_4$
3. Si$_{<100>$}
4. Topside lithography and e-beam metallization
5. Backside lithography and Alignment
6. Au, Si$_3$N$_4$
7. Resist
8. KOH wet etching
9. 50µm
10. Coating removal

Siliconnitride

Silicon

Metal top layer (Au, Pt...)

Cr or Ti adhesion layer

n nanopores
Pore drilling

Dual-beam FIB/SEM

- Drilling into Si₃N₄ or metalized membranes (e.g. ~100 nm (+ ~100 nm Au))
- Single pore or arrays, say 5x5
- Pore diameter ~ 50 -100 nm (≥ 25 nm)
- Different geometries: Pores, slits, etc.

(S)TEM, FEI Titan

- Membrane thicknesses: 30 to 100 nm
- Pore diameter > 2 nm
- Shrinking and enlarging pores
Basic technology and facilities

• Potentiostats, bi- and tripotentiostats, patch-clamp (Axopatch 200B)
• Rigs for single-molecule (fluorophore) optical detection, FLIM…
• Microfluidics (e.g. for high-throughput droplet-based screening)
• Micro- and nanofabrication facilities @ LCN (class 100 clean rooms etc.)
• Surface characterization: optical, SEM, FIB, (S)TEM, EC-STM
Fabrication of small nanopores using electrodeposition and ion current feedback
Ultra-small nanopores difficult and expensive to make (by STEM) alternatives?
Bipotentiostatic control: Two independent WE

In bipotentiostatic mode, two working electrodes (WE) are independently controlled with respect to a common working electrode.

- Set bias between WE2 and CE/RE
- WE1 (Au) “inactive” (e.g. at ocp)
- Ion current \propto Pore conductance
- Change $E(WE1)$ for electrodeposition to occur:

$$[\text{PtCl}_4]^{2-} + 2e^- \rightarrow \text{Pt}^0 + 4\text{Cl}^-$$

During deposition, the pore diameter shrinks, the ion current decreases… stop deposition at pre-defined value!
Active feedback control, example

- Deposition in 100 mM KCl + 10 mM K$_2$[PtCl$_4$]
- Bias = 200 mV
- $E(\text{WE1})_{\text{dep}}$ = 0.35 V
- Bias scans in 100 mM KCl
Calibration and extrapolation: Single digit nanopores?

Apparent pore diameter by SEM, conductance by I/V scan (100 mM KCl)
Some conclusions

- Surface roughness vs. screening length
- Simple scaling law to break down for very small pores
- Apparent size vs. conductance feedback
- Surface modification (SAMs, effect on noise...)
- Range of different materials/metals to be deposited
- Preliminary DNA translocation data
- Fabrication can be extended to array format
Pore arrays

Starting from a 2×2 array of 150 nm pores:

Final pore diameter

- 35 × 29 nm
- 32 × 44 nm
- 39 × 39 nm
- 40 × 48 nm
- ~ 30 - 40 nm

- Pore size decreased by one order of magnitude
- Shrinking fairly uniform across the four pores
Example II

Optical readout of pore translocation: fluorescently labelled λ-DNA
Fluorescence-based readout

Optical readout (fluorescence), 48 kb λ-DNA

• DNA/RNA fragment sizing and sequencing

• Protein analysis, protein/protein binding, protein/DNA binding

• Applications: Cardiovascular disease, cancer, diabetes...

• Imperial College Healthcare (NHS trust), http://www.imperial.nhs.uk/index.htm
 • Founded in 2007
 • Merger of St. Mary Hospital Trust and Hammersmith Hospitals Trust
 • Headed by Imperial College/Medicine: Imperial College Healthcare Trust
 • “Academic Health Science Centre”
Basic research

What are the problems?

Realistic samples

Realistic testing

Point-of-care diagnostics

Patients
Thank you!