Computational Electromagnetics

Introduction

Dr. Wallace

Fall 2009
Outline

Background

Lecture Description

Laboratory Description
Why study electromagnetics (EM)?

- Reason #1: It's cool!
 - Waves and fields ≈ magic!
 - Action at a distance.
 - What are fields? How do they work?
Why study electromagnetics (EM)?

Reason #1: It’s cool!
Why study electromagnetics (EM)?

Reason #1: It’s cool!

- Waves and fields \(\approx\) magic!
Why study electromagnetics (EM)?

Reason #1: It’s cool!
 ▶ Waves and fields \(\approx \) magic!
 ▶ Action at a distance.
Why study electromagnetics (EM)?

Reason #1: It’s cool!

- Waves and fields \approx magic!
- Action at a distance.
- What are fields? How do they work?
Why study electromagnetics (EM)?

Reason #2: It’s fundamental.
Why study electromagnetics (EM)?

Reason #2: It’s fundamental.

▶ Electric, electrical, optical devices governed by EM
Why study electromagnetics (EM)?

Reason #2: It’s fundamental.

- Electric, electrical, optical devices governed by EM
- Applications of EM: Satellite comm., wireless, GPS, radar, optical storage, fiber-optic networks, ...
Why study electromagnetics (EM)?

Reason #2: It’s fundamental.
- Electric, electrical, optical devices governed by EM
- Applications of EM: Satellite comm., wireless, GPS, radar, optical storage, fiber-optic networks, ...
- Often use a simpler description (e.g. digital chip)
Why study electromagnetics (EM)?

Reason #2: It’s fundamental.

- Electric, electrical, optical devices governed by EM
- Applications of EM: Satellite comm., wireless, GPS, radar, optical storage, fiber-optic networks, ...
- Often use a simpler description (e.g. digital chip)

What happens when simplifying assumptions break down (V=0/1, prop. delay model, no cross-talk, etc.)?
Why study electromagnetics (EM)?

Reason #2: It’s fundamental.

▶ Electric, electrical, optical devices governed by EM
▶ Applications of EM: Satellite comm., wireless, GPS, radar, optical storage, fiber-optic networks, ...
▶ Often use a simpler description (e.g. digital chip)

▶ What happens when simplifying assumptions break down (V=0/1, prop. delay model, no cross-talk, etc.)?
▶ Knowing EM: Can develop new models.
Why study electromagnetics (EM)?

Reason #3: It fosters mathematical maturity.

Electromagnetics applies:
- Multivariate calculus
- Vector algebra and calculus
- Partial differential equations
- Fourier transform theory
- Complex analysis
- Asymptotic analysis
- Linear algebra
- Statistics

A good way to become comfortable with these!
Why study electromagnetics (EM)?

Reason #3: It fosters mathematical maturity.
Why study electromagnetics (EM)?

Reason #3: It fosters mathematical maturity.

- Electromagnetics applies
Why study electromagnetics (EM)?

Reason #3: *It fosters mathematical maturity.*

- Electromagnetics applies
 - Multivariate calculus
Why study electromagnetics (EM)?

Reason #3: It fosters mathematical maturity.

- Electromagnetics applies
 - Multivariate calculus
 - Vector algebra and calculus
Why study electromagnetics (EM)?

Reason #3: It fosters mathematical maturity.

Electromagnetics applies
- Multivariate calculus
- Vector algebra and calculus
- Partial differential equations
Why study electromagnetics (EM)?

Reason #3: It fosters mathematical maturity.

- Electromagnetics applies
 - Multivariate calculus
 - Vector algebra and calculus
 - Partial differential equations
 - Fourier transform theory
Why study electromagnetics (EM)?

Reason #3: It fosters mathematical maturity.

Electromagnetics applies
- Multivariate calculus
- Vector algebra and calculus
- Partial differential equations
- Fourier transform theory
- Complex analysis
Why study electromagnetics (EM)?

Reason #3: It fosters mathematical maturity.

- Electromagnetics applies
 - Multivariate calculus
 - Vector algebra and calculus
 - Partial differential equations
 - Fourier transform theory
 - Complex analysis
 - Asymptotic analysis
Why study electromagnetics (EM)?

Reason #3: It fosters mathematical maturity.

- Electromagnetics applies
 - Multivariate calculus
 - Vector algebra and calculus
 - Partial differential equations
 - Fourier transform theory
 - Complex analysis
 - Asymptotic analysis
 - Linear algebra
Why study electromagnetics (EM)?

Reason #3: It fosters mathematical maturity.

- Electromagnetics applies
 - Multivariate calculus
 - Vector algebra and calculus
 - Partial differential equations
 - Fourier transform theory
 - Complex analysis
 - Asymptotic analysis
 - Linear algebra
 - Statistics
Why study electromagnetics (EM)?

Reason #3: *It fosters mathematical maturity.*

- Electromagnetics applies
 - Multivariate calculus
 - Vector algebra and calculus
 - Partial differential equations
 - Fourier transform theory
 - Complex analysis
 - Asymptotic analysis
 - Linear algebra
 - Statistics

- A good way to become comfortable with these!
What is computational EM?

Maxwell’s Equations

\[\nabla \cdot \mathbf{D} = \rho \]
\[\nabla \cdot \mathbf{B} = 0 \]

\[\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \]
\[\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J} \]
What is computational EM?

Maxwell’s Equations

\[\nabla \cdot \mathbf{D} = \rho_v \]
\[\nabla \cdot \mathbf{B} = 0 \]
\[\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \]
\[\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J} \]

- Maxwell’s equations with BC’s give exact solution.
What is computational EM?

Maxwell’s Equations

\[\nabla \cdot \overline{D} = \rho_v \]
\[\nabla \cdot \overline{B} = 0 \]
\[\nabla \times \overline{E} = -\frac{\partial \overline{B}}{\partial t} \]
\[\nabla \times \overline{H} = \frac{\partial \overline{D}}{\partial t} + \overline{J} \]

- Maxwell’s equations with BC’s give exact solution.
- Problem: Only solvable for very simple problems!
What is computational EM?

Maxwell’s Equations

\[\nabla \cdot \bar{D} = \rho_v \]
\[\nabla \cdot \bar{B} = 0 \]
\[\nabla \times \bar{E} = -\frac{\partial \bar{B}}{\partial t} \]
\[\nabla \times \bar{H} = \frac{\partial \bar{D}}{\partial t} + \bar{J} \]

- Maxwell’s equations with BC’s give exact solution.
- Problem: Only solvable for very simple problems!
- Solution #1: Make approximations, simplifying assumptions
What is computational EM?

Maxwell’s Equations

\[\nabla \cdot \vec{D} = \rho_v \]
\[\nabla \cdot \vec{B} = 0 \]
\[\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \]
\[\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{J} \]

- Maxwell’s equations with BC’s give exact solution.
- Problem: Only solvable for very simple problems!
- Solution #1: Make approximations, simplifying assumptions
- Solution #2: Discretize, solve numerically (CEM)
What is computational EM?

Maxwell’s Equations

\[\nabla \cdot \mathbf{D} = \rho_v \]
\[\nabla \cdot \mathbf{B} = 0 \]
\[\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \]
\[\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J} \]

- Maxwell’s equations with BC’s give exact solution.
- Problem: Only solvable for very simple problems!
- Solution #1: Make approximations, simplifying assumptions
- Solution #2: Discretize, solve numerically (CEM)
- No best CEM method: Generality, accuracy, efficiency, ease of implementation
Outline

Background

Lecture Description

Laboratory Description
Concepts covered: 1. Basic numerical techniques

Needed in other methods
Concepts covered: 1. Basic numerical techniques

- Needed in other methods
- Numerical integration
Concepts covered: 1. Basic numerical techniques

- Needed in other methods
- Numerical integration
- Random number generation
Concepts covered: 1. Basic numerical techniques

- Needed in other methods
- Numerical integration
- Random number generation
- Monte-Carlo methods
Concepts covered: 2. Finite-difference (FD) methods

\[\frac{\partial f(x)}{\partial x} \approx \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x} \]

- Discretize PDEs directly
Concepts covered: 2. Finite-difference (FD) methods

\[\frac{\partial f(x)}{\partial x} \approx \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x} \]

- Discretize PDEs directly
- Advantages
Concepts covered: 2. Finite-difference (FD) methods

\[
\frac{\partial f(x)}{\partial x} \approx \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x}
\]

- Discretize PDEs directly
- Advantages
 - Conceptually simple
 - Easy to implement

Disadvantages
- Derivatives amplify errors (accuracy)
- Volumetric method (high model order)

But, still used in practice!
Concepts covered: 2. Finite-difference (FD) methods

\[
\frac{\partial f(x)}{\partial x} \approx \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x}
\]

- Discretize PDEs directly
- Advantages
 - Conceptually simple
 - Easy to implement
- Disadvantages
Concepts covered: 2. Finite-difference (FD) methods

\[\frac{\partial f(x)}{\partial x} \approx \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x} \]

- Discretize PDEs directly
- Advantages
 - Conceptually simple
 - Easy to implement
- Disadvantages
 - Derivatives amplify errors (accuracy)
 - Volumetric method (high model order)

But, still used in practice!
Concepts covered: 2. Finite-difference (FD) methods

\[
\frac{\partial f(x)}{\partial x} \approx \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x}
\]

- Discretize PDEs directly
- Advantages
 - Conceptually simple
 - Easy to implement
- Disadvantages
 - Derivatives amplify errors (accuracy)
 - Volumetric method (high model order)
- But, still used in practice!
Concepts covered: 2. FD applications

\[\frac{\partial f(x)}{\partial x} \approx \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x} \]

- Quasi-static: capacitive structures, transmission lines
Concepts covered: 2. FD applications

\[
\frac{\partial f(x)}{\partial x} \approx \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x}
\]

- Quasi-static: capacitive structures, transmission lines
- Dynamic: wave equation
Concepts covered: 2. FD applications

\[
\frac{\partial f(x)}{\partial x} \approx \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x}
\]

- Quasi-static: capacitive structures, transmission lines
- Dynamic: wave equation
- Finite-difference time-domain (FDTD)

Dr. Wallace Computational Electromagnetics
Concepts covered: 2. FD applications

\[\frac{\partial f(x)}{\partial x} \approx \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x} \]

- Quasi-static: capacitive structures, transmission lines
- Dynamic: wave equation
- Finite-difference time-domain (FDTD)
Concepts covered: 3. Method of Moments (MoM)

- Cast PDEs into integral form analytically
Concepts covered: 3. Method of Moments (MoM)

- Cast PDEs into integral form analytically
- Green’s function analysis
Concepts covered: 3. Method of Moments (MoM)

- Cast PDEs into integral form analytically
- Green’s function analysis
- Only unknowns on *surface* need be modeled
Concepts covered: 3. Method of Moments (MoM)

- Cast PDEs into integral form analytically
- Green’s function analysis
- Only unknowns on *surface* need be modeled
- Radiating boundaries included automatically

Dr. Wallace Computational Electromagnetics
Concepts covered: 3. Method of Moments (MoM)

- Cast PDEs into integral form analytically
- Green’s function analysis
- Only unknowns on *surface* need be modeled
- Radiating boundaries included automatically
- Very efficient and accurate!
Concepts covered: 3. Method of Moments (MoM)

- Cast PDEs into integral form analytically
- Green’s function analysis
- Only unknowns on *surface* need be modeled
- Radiating boundaries included automatically
- Very efficient and accurate!
- Price: extra analytical work
Concepts covered: 4. Variational Methods

\[\nabla^2 \Phi(x, y) = -f(x, y) \]

\[I = \frac{1}{2} \int \int_S [\Phi_x^2 + \Phi_y^2 - 2f(x, y)\Phi]dS \]
Concepts covered: 4. Variational Methods

\[\nabla^2 \Phi(x, y) = -f(x, y) \]

\[I = \frac{1}{2} \iint_S [\Phi_x^2 + \Phi_y^2 - 2f(x, y)\Phi] dS \]

- Generalization of the moment method
Concepts covered: 4. Variational Methods

∇^2 \Phi(x, y) = -f(x, y)

I = \frac{1}{2} \int \int_S [\Phi_x^2 + \Phi_y^2 - 2f(x, y)\Phi]dS

- Generalization of the moment method
- Convert the PDE into minimization of an integral equation
Concepts covered: 4. Variational Methods

\[\nabla^2 \Phi(x, y) = -f(x, y) \]

\[I = \frac{1}{2} \iint_S [\Phi_x^2 + \Phi_y^2 - 2f(x, y)\Phi]dS \]

- Generalization of the moment method
- Convert the PDE into minimization of an integral equation
- Concepts:
Concepts covered: 4. Variational Methods

\[\nabla^2 \Phi(x, y) = -f(x, y) \]

\[I = \frac{1}{2} \int \int_S [\Phi_x^2 + \Phi_y^2 - 2f(x, y)\Phi] dS \]

- Generalization of the moment method
- Convert the PDE into minimization of an integral equation
- Concepts:
 - Variational calculus
 - Converting PDEs to variational form (and back)
 - Rayleigh-Ritz method
 - Weighted residual method
Concepts covered: 5. Finite-element Method (FEM)

- Powerful technique for solving PDEs
Concepts covered: 5. Finite-element Method (FEM)

- Powerful technique for solving PDEs
- Used in many different disciplines
Concepts covered: 5. Finite-element Method (FEM)

- Powerful technique for solving PDEs
- Used in many different disciplines
- Divide domain into subdomains (finite elements)
Concepts covered: 5. Finite-element Method (FEM)

- Powerful technique for solving PDEs
- Used in many different disciplines
- Divide domain into subdomains (finite elements)
- Derive governing equation in each element (var. principle)
Concepts covered: 5. Finite-element Method (FEM)

- Powerful technique for solving PDEs
- Used in many different disciplines
- Divide domain into subdomains (finite elements)
- Derive governing equation in each element (var. principle)
- Assemble elements
Concepts covered: 5. Finite-element Method (FEM)

- Powerful technique for solving PDEs
- Used in many different disciplines
- Divide domain into subdomains (finite elements)
- Derive governing equation in each element (var. principle)
- Assemble elements
- Solve resulting minimization problem
Progress still being made in CEM!

- Ray-tracing and hybrid methods
Progress still being made in CEM!

- Ray-tracing and hybrid methods
- Finite-volume generalizations of FDTD (CST)
Progress still being made in CEM!

- Ray-tracing and hybrid methods
- Finite-volume generalizations of FDTD (CST)
- Fast-multipole method for MoM
Progress still being made in CEM!

- Ray-tracing and hybrid methods
- Finite-volume generalizations of FDTD (CST)
- Fast-multipole method for MoM
- Domain decomposition for repeated structures
Progress still being made in CEM!

- Ray-tracing and hybrid methods
- Finite-volume generalizations of FDTD (CST)
- Fast-multipole method for MoM
- Domain decomposition for repeated structures
- Solve resulting minimization problem
<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intro</td>
</tr>
<tr>
<td></td>
<td>Basic Numerical Techniques: Integration, Monte Carlo Methods</td>
</tr>
</tbody>
</table>
| 2 | **FD Methods:** Laplace Equation
 | Example: Transmission Lines |
| 3 | 1D Wave Equation, Absorbing Boundaries
 | Stability of FD Solutions |
| 4 | Waveguides; Modal Solutions |
| 5 | **FDTD:** Yee cells, discretization, algorithm
 | Materials, Sources, scattering
 | Post processing, 2D FDTD |
| 6 | Perfectly Matched Layer (PML) |
| 7 | *Reading Day*
 | *Midterm* |
| 8 | **Method of Moments:** Green’s Function, Laplace Eq.
 | Capacitance Computation |
| 9 | Scattering problems, Far-Fields
 | Radiation problems |
| 10 | Volumetric MoM |
| 11 | **Variational Methods:** Variational Calculus
 | Rayleigh Ritz Method
 | Eigenvalue problems, Weighted residuals |
| 12 | **Finite-Element Method (FEM)**:
 | Element Assembly |
| 13 | **Modern Developments:** Ray-tracing; Hybrid Methods
 | Fast Multipole Method |
| 14 | **Finite-Volume Time Domain**
 | *Project Presentations* |
Prerequisite Material

- Programming (mainly for lab)
Prerequisite Material

- Programming (mainly for lab)
- Engineering math: Multivariate calculus, differential equations, Fourier transforms
Prerequisite Material

- Programming (mainly for lab)
- Engineering math: Multivariate calculus, differential equations, Fourier transforms
- Vector analysis: orthogonal coordinate systems, dot/cross product, divergence, curl
Prerequisite Material

- Programming (mainly for lab)
- Engineering math: Multivariate calculus, differential equations, Fourier transforms
- Vector analysis: orthogonal coordinate systems, dot/cross product, divergence, curl
- Basic electromagnetics
Prerequisite Material

- Programming (mainly for lab)
- Engineering math: Multivariate calculus, differential equations, Fourier transforms
- Vector analysis: orthogonal coordinate systems, dot/cross product, divergence, curl
- Basic electromagnetics
Textbook

- No good comprehensive source on CEM

Dr. Wallace
Computational Electromagnetics
Textbook

- No good comprehensive source on CEM
- Sadiku book (comprehensive, but a little too sketchy)

Course website: http://www.xwallace.com/courses/cem
Textbook

- No good comprehensive source on CEM
- Sadiku book (comprehensive, but a little too sketchy)
- Class notes (main source of information)
Textbook

- No good comprehensive source on CEM
- Sadiku book (comprehensive, but a little too sketchy)
- Class notes (main source of information)
- **Course website:** http://www.xwallace.com/courses/cem
Academic integrity

- Expected to follow as student at Jacobs
Academic integrity

- Expected to follow as student at Jacobs
- Do your own work on assignments, labs
Academic integrity

- Expected to follow as student at Jacobs
- Do your own work on assignments, labs
- You can get help, but ultimately, you should write your own codes and own solutions
Academic integrity

- Expected to follow as student at Jacobs
- Do your own work on assignments, labs
- You can get help, but ultimately, you should write your own codes and own solutions
- I will not tolerate obviously copied work!
Academic integrity

- Expected to follow as student at Jacobs
- Do your own work on assignments, labs
- You can get help, but ultimately, you should write your own codes and own solutions
- I will not tolerate obviously copied work!
Grading

Weight of grade
 Homework assignments 20%
 Midterm 40%
 Final 40%
Outline

Background

Lecture Description

Laboratory Description
Laboratory Part

Purpose of Laboratory
Laboratory Part

Purpose of Laboratory

▶ Practical experience implementing algorithms
Laboratory Part

Purpose of Laboratory

- Practical experience implementing algorithms
- How do you learn CEM without the C?
Laboratory Part

Purpose of Laboratory

- Practical experience implementing algorithms
- How do you learn CEM without the C?
- Visualize what the math means
Laboratory Part

Purpose of Laboratory

- Practical experience implementing algorithms
- How do you learn CEM without the C?
- Visualize what the math means

Format
Laboratory Part

Purpose of Laboratory
- Practical experience implementing algorithms
- How do you learn CEM without the C?
- Visualize what the math means

Format
- About one assignment per week
Laboratory Part

Purpose of Laboratory

- Practical experience implementing algorithms
- How do you learn CEM without the C?
- Visualize what the math means

Format

- About one assignment per week
- Designed to take less than 3 hours
Laboratory Part

Purpose of Laboratory

- Practical experience implementing algorithms
- How do you learn CEM without the C?
- Visualize what the math means

Format

- About one assignment per week
- Designed to take less than 3 hours
- Use own computer
Laboratory Part

Purpose of Laboratory

▶ Practical experience implementing algorithms
▶ How do you learn CEM without the C?
▶ Visualize what the math means

Format

▶ About one assignment per week
▶ Designed to take less than 3 hours
▶ Use own computer
▶ Any programming environment fine (Matlab, Octave, etc.)
Laboratory Part

Purpose of Laboratory

- Practical experience implementing algorithms
- How do you learn CEM without the C?
- Visualize what the math means

Format

- About one assignment per week
- Designed to take less than 3 hours
- Use own computer
- Any programming environment fine (Matlab, Octave, etc.)
- Project
Lab Grading

Weight of grade
Lab Assignments 70%
Project Writeup 15%
Project Present 15%
Thank you

See you next time!