Chapter 1: Introduction
History of Antennas and Propagation

Timeline

- 1870 Maxwell’s Equations
- 80 Heinrich Hertz’s Loop Experiment (1886)
- 90
- 1900 Guglielmo Marconi (1901) Transatlantic Transmission
- 10 Spark gap telegraphy
- 20 Audio broadcasting
- 30
- 40 WWII: Microwave sources Radar
- 1950 MTS system in USA
- 60 Computers, Numerical CEM
- 70 Analog Cellular
- 80 GPS satellites launched
- 90 Digital cellular, wireless LAN
- 2000 Advanced integrated devices/MIMO
- 10 ???
History of Antennas and Propagation

Timeline

1870 Maxwell’s Equations
80 Heinrich Hertz’s Loop Experiment (1886)
90
1900 Guglielmo Marconi (1901) Transatlantic Transmission
10 Spark gap telegraphy
20 Audio broadcasting
30
40 WWII: Microwave sources Radar
1950 MTS system in USA
60 Computers, Numerical CEM
70 Analog Cellular
80 GPS satellites launched
90 Digital cellular, wireless LAN
2000 Advanced integrated devices, MIMO
10 ???

\[\nabla \cdot \vec{D} = \rho_v \]
\[\nabla \cdot \vec{B} = 0 \]
\[\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \]
\[\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{J} \]
History of Antennas and Propagation

Timeline

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1870</td>
<td>Maxwell's Equations</td>
</tr>
<tr>
<td>80</td>
<td>Heinrich Hertz's Loop Experiment (1886)</td>
</tr>
<tr>
<td>90</td>
<td>Spark gap telegraphy</td>
</tr>
<tr>
<td>1900</td>
<td>Guglielmo Marconi (1901) Transatlantic Transmission</td>
</tr>
<tr>
<td>20</td>
<td>Audio broadcasting</td>
</tr>
<tr>
<td>30</td>
<td>WWII: Microwave sources Radar</td>
</tr>
<tr>
<td>1950</td>
<td>MTS system in USA</td>
</tr>
<tr>
<td>60</td>
<td>Computers, Numerical CEM</td>
</tr>
<tr>
<td>70</td>
<td>Analog Cellular</td>
</tr>
<tr>
<td>80</td>
<td>GPS satellites launched</td>
</tr>
<tr>
<td>90</td>
<td>Digital cellular, wireless LAN</td>
</tr>
<tr>
<td>2000</td>
<td>Advanced integrated devices, MIMO</td>
</tr>
<tr>
<td>10</td>
<td>???</td>
</tr>
</tbody>
</table>
History of Antennas and Propagation

Timeline

1870 Maxwell’s Equations
80 Heinrich Hertz’s Loop Experiment (1886)
90
1900 **Guglielmo Marconi (1901) Transatlantic Transmission**
10 Spark gap telegraphy
20 Audio broadcasting
30
40 WWII: Microwave sources Radar
1950 MTS system in USA
60 Computers, Numerical CEM
70
80
90
2000
20
History of Antennas and Propagation

Timeline

- 1870: Maxwell’s Equations
- 80: Heinrich Hertz’s Loop Experiment (1886)
- 90: Guglielmo Marconi (1901) Transatlantic Transmission
- 10: Spark gap telegraphy
- 20: Audio broadcasting
- 30: WWII: Microwave sources Radar
- 1950: MTS system in USA
- 60: Computers, Numerical CEM
- 70: Analog Cellular
- 80: GPS satellites launched
- 90: Digital cellular, wireless LAN
- 2000: Advanced integrated devices/MIMO
- 10: ???
History of Antennas and Propagation

Timeline

1870 Maxwell’s Equations
80 Heinrich Hertz’s Loop Experiment (1886)
90
1900 Guglielmo Marconi (1901) Transatlantic Trans
10 Spark gap telegraphy
20 Audio broadcasting
30
40 WWII: Microwave sources Radar
1950 MTS system in USA
60 Computers, Numerical CEM
70 Analog Cellular
80 GPS satellites
90 Digital cellular
2000 Advanced integrated devices/MIMO
10 ???
History of Antennas and Propagation

Timeline

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1870</td>
<td>Maxwell’s Equations</td>
</tr>
<tr>
<td>80</td>
<td>Heinrich Hertz’s Loop Experiment (1886)</td>
</tr>
<tr>
<td>90</td>
<td>Spark gap telegraphy</td>
</tr>
<tr>
<td>1900</td>
<td>Guglielmo Marconi (1901) Transatlantic Transmission</td>
</tr>
<tr>
<td>20</td>
<td>Audio broadcasting</td>
</tr>
<tr>
<td>30</td>
<td>WWII: Microwave sources Radar</td>
</tr>
<tr>
<td>40</td>
<td>MTS system in USA</td>
</tr>
<tr>
<td>60</td>
<td>Computers, Numerical CEM</td>
</tr>
<tr>
<td>70</td>
<td>Analog Cellular</td>
</tr>
<tr>
<td>80</td>
<td>GPS satellites launched</td>
</tr>
<tr>
<td>90</td>
<td>Digital cellular, wireless LAN</td>
</tr>
<tr>
<td>2000</td>
<td>Advanced integrated devices/MIMO</td>
</tr>
<tr>
<td>10</td>
<td>???</td>
</tr>
</tbody>
</table>
History of Antennas and Propagation

Timeline

1870 Maxwell’s Equations
80 Heinrich Hertz’s Loop Experiment (1886)
90
1900 Guglielmo Marconi (1901) Transatlantic Transmission
10 Spark gap telegraphy
20 Audio broadcasting
30
40 WWII: Microwave sources Radar
1950 MTS system in USA
60 Computers, Numerical CEM
70 Analog Cellular
80 GPS satellites launched
90 Digital cellular, wireless LAN
2000 Advanced integrated devices/MIMO
10 ???
History of Antennas and Propagation

Timeline

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1870</td>
<td>Maxwell’s Equations</td>
</tr>
<tr>
<td>80</td>
<td>Heinrich Hertz’s Loop Experiment (1886)</td>
</tr>
<tr>
<td>90</td>
<td>Heinrich Hertz’s Loop Experiment (1886)</td>
</tr>
<tr>
<td>1900</td>
<td>Guglielmo Marconi (1901) Transatlantic Transmission</td>
</tr>
<tr>
<td>10</td>
<td>Spark gap telegraphy</td>
</tr>
<tr>
<td>20</td>
<td>Audio broadcasting</td>
</tr>
<tr>
<td>30</td>
<td>MTS system in USA</td>
</tr>
<tr>
<td>40</td>
<td>WWII: Microwave sources Radar</td>
</tr>
<tr>
<td>60</td>
<td>Computers, Numerical CEM</td>
</tr>
<tr>
<td>70</td>
<td>Analog Cellular</td>
</tr>
<tr>
<td>80</td>
<td>GPS satellites launched</td>
</tr>
<tr>
<td>90</td>
<td>Digital cellular, wireless LAN</td>
</tr>
<tr>
<td>2000</td>
<td>Advanced integrated devices/MIMO</td>
</tr>
<tr>
<td>10</td>
<td>???</td>
</tr>
</tbody>
</table>
History of Antennas and Propagation

Timeline

1870 Maxwell’s Equations
80 Heinrich Hertz’s Loop Experiment (1886)
90
1900 Guglielmo Marconi (1901) Transatlantic Transmission
10 Spark gap telegraphy
20 Audio broadcasting
30
40 WWII: Microwave sources Radar
1950 MTS system in USA
60 Computers, Numerical CEM
70 **Analog Cellular**
80 GPS satellites launched
90 Digital cellular, wireless LAN
2000 Advanced integrated devices/MIMO
10 ???
History of Antennas and Propagation

Timeline

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1870</td>
<td>Maxwell’s Equations</td>
</tr>
<tr>
<td>80</td>
<td>Heinrich Hertz’s Loop Experiment (1886)</td>
</tr>
<tr>
<td>90</td>
<td>Guglielmo Marconi (1901) Transatlantic Transmission</td>
</tr>
<tr>
<td>10</td>
<td>Spark gap telegraphy</td>
</tr>
<tr>
<td>20</td>
<td>Audio broadcasting</td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>WWII: Microwave sources Radar</td>
</tr>
<tr>
<td>1950</td>
<td>MTS system in USA</td>
</tr>
<tr>
<td>60</td>
<td>Computers, Numerical CEM</td>
</tr>
<tr>
<td>70</td>
<td>Analog Cellular</td>
</tr>
<tr>
<td>80</td>
<td>GPS satellites launched</td>
</tr>
<tr>
<td>90</td>
<td>Digital cellular, wireless LAN</td>
</tr>
<tr>
<td>2000</td>
<td>Advanced integrated devices/MIMO</td>
</tr>
<tr>
<td>10</td>
<td>???</td>
</tr>
</tbody>
</table>
History of Antennas and Propagation

Timeline

1870 Maxwell’s Equations
80 Heinrich Hertz’s Loop Experiment (1886)
90 Spark gap telegraphy
1900 Guglielmo Marconi (1901) Transatlantic Transmission
10 Audio broadcasting
20 WWII: Microwave sources Radar
30 MTS system in USA
40 Computers, Numerical CEM
50 Analog Cellular
60 GPS satellites launched
90 Digital cellular, wireless LAN
2000 Advanced integrated devices/MIMO
10 ???
History of Antennas and Propagation

Timeline

1870 Maxwell’s Equations
80 Heinrich Hertz’s Loop Experiment (1886)
90
1900 Guglielmo Marconi (1901) Transatlantic Transmission
10 Spark gap telegraphy
20 Audio broadcasting
30
40 WWII: Microwave sources Radar
1950 MTS system in USA
60 Computers, Numerical CEM
70 Analog Cellular
80 GPS satellites launched
90 Digital cellular, wireless LAN
2000 Advanced integrated devices/MIMO
10 ???
History of Antennas and Propagation

Timeline

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1870</td>
<td>Maxwell’s Equations</td>
</tr>
<tr>
<td>1886</td>
<td>Heinrich Hertz’s Loop Experiment</td>
</tr>
<tr>
<td>1900</td>
<td>Guglielmo Marconi (1901) Transatlantic Transmission</td>
</tr>
<tr>
<td>1910</td>
<td>Spark gap telegraphy</td>
</tr>
<tr>
<td>1920</td>
<td>Audio broadcasting</td>
</tr>
<tr>
<td>1930</td>
<td>WWII: Microwave sources Radar</td>
</tr>
<tr>
<td>1950</td>
<td>MTS system in USA</td>
</tr>
<tr>
<td>1960</td>
<td>Computers, Numerical CEM</td>
</tr>
<tr>
<td>1970</td>
<td>Analog Cellular</td>
</tr>
<tr>
<td>1980</td>
<td>GPS satellites launched</td>
</tr>
<tr>
<td>1990</td>
<td>Digital cellular, wireless LAN</td>
</tr>
<tr>
<td>2000</td>
<td>Advanced integrated devices/MIMO</td>
</tr>
<tr>
<td>2020</td>
<td>???</td>
</tr>
</tbody>
</table>
Antennas

Definition
Antennas are *transducers* that convert electrical signals into propagating electromagnetic waves and vice versa.

Analogy
Sound: Speakers, Microphones
Basic Antenna System (1)

Source

Equivalent circuit that generates signals
E.g. DSP, D/A converter, microwave oscillator, mixer

V_g: Generator voltage

Z_g: Generator input impedance
Basic Antenna System (2)

Transmission Line
- Carries signals from source to antenna
- E.g. coaxial cable, waveguide, circuit board trace
- Propagating, standing waves can be present
Basic Antenna System (3)

Antenna (Load)
- R_L Power dissipated in the antenna, ohmic losses
- R_r Radiation resistance. Good loss!
- X_A Reactance of antenna. Stored energy. Can make matching more difficult.

Matching
- Important to ensure nearly all available power delivered to antenna.
Antenna Design

Goals

Should be low-loss = high efficiency
Matched to a convenient impedance
Radiate (or receive) power in right “directions” and polarizations
Be as compact as possible
Operate over required bandwidth

Propagation aspects

Right “directions” depends on environment
User/nearby objects affect antenna operation
Importance of Good Antenna Design

Analogy: Camera

Antenna is like lens, camera optics
Possible impairments:
 - Dirt/scratches on lens
 - Improper focus
 - Inadequate lighting
DSP techniques can enhance image
But ... impossible to restore lost information

Well-designed antennas

Provide huge improvement to later DSP algorithms and operations
Can ease system constraints (e.g. filtering)
Often must consider *propagation* environment for optimal solution
Antenna Types: Wire Antennas

Wire Antennas

- Dipole
- Monopole
- Loop

Properties

- Simple
- Low cost (a bent wire!)
- Efficient
- Single frequency
Antenna Types: Microstrip Antennas

Microstrip Antennas

- Patch
- Spiral

Properties

- Planar (low profile)
- Rigid / Robust
- Can be low cost (integrated with PC board)
- Versatile
Antenna Types: Aperture Antennas

Aperture Antennas

- Horn
- Vivaldi
- Waveguide

Properties

- Rigid (especially horn)
- Wideband operation
- Useful for aerospace applications
- antenna measurements
- But, can be bulky / heavy
Antenna Types: Conformal

Conformal Antennas

Cone

Properties

Surface is a degree of freedom to optimize pattern

Or, given an existing surface, can use for antenna

Example: airplane wing, window, etc.

Design / fabrication more involved
Antenna Types: Reflector Antennas

Reflector Antennas
- Parabolic Dish
- Corner Reflector

Properties
- Very narrow beam (high gain) possible
- Bandwidth only limited by feed and size of reflector
- But, can be bulky, expensive
Antenna Types: Antenna Arrays

Antenna Arrays

Patch Array (WLAN)

Properties

- Gain enhancement over a single element
- Dynamic/electronic steering of beam
- Spatial diversity / multiplexing

NRAO VLA
Antenna Operational Principles

1. Resonant Antennas
 Designed to operate at one frequency. Analogy: guitar string.
 Dipoles, loops, patches

2. Waveguide type antennas
 Smooth transition from waveguide to free-space. Analogy: speaker
 Very wide operational bandwidth
 Horn antennas

Reflectors / Arrays
 Can be considered method of modifying/focusing pattern of other
 basic antenna types
Propagation

Free Space
Through air or vacuum
Simple to describe mathematically
Line-of-sight, space channels
(scatterers not in main path)

Ionosphere
Looks conductive at many uW frequencies = loss!
Faraday (polarization) rotation

Multipath Propagation
Multiple paths from TX to RX create fading of signal

Human Body Interactions
Course Organization
1. Electromagnetic (EM) Analysis (2 weeks)

Transmission Lines (review)
Vector Potentials / Wave Equation
 Derive waves generated by source currents in an arbitrary antenna

Far-field Radiation
 Exact computation of fields can be costly
 Often we are interested in fields far from antenna (radar, comm)
 Far-field expressions usually much simpler

Duality/Reciprocity
 Extremely useful properties of EM fields

Motivation
 Fundamental mathematical tools to predict antenna behavior
Course Organization
2. Antenna Parameters (1 week)

Standard Antenna Terms and Parameters
- Patterns
- Gain
- Bandwidth
- Polarization
- Input Impedance
- Coupling

Motivation
Language to describe / compare antenna operation
Course Organization
3. Antenna Types (2 weeks)

Basic Antenna Types
- Show at least one example of each antenna type
 - Wire Antennas: Dipoles and loops
 - Planar Antennas: Patches
 - Aperture Antennas, Reflectors
 - Broadband, frequency-independent antennas

Motivation
- See techniques (tricks) to analyze most antennas
- Gain intuition: “see” how antennas work
Element/Array Factor
 Separate effect of individual elements, array

Mutual coupling
 For closely-spaced antennas, fields interact

Beamforming, Nulling
 Most basic and useful applications of arrays
 Enhance signals of interest, suppress interference

Motivation
 Array processing used in most advanced modern systems
 Overcomes deficiencies of single elements
Course Organization
5. Propagation (3 weeks)

Channel Modeling
- Power laws (radar range equation)
- Multipath: rays and clusters
- Fading: Rayleigh, Rician, Shadowing

MIMO Modeling/Analysis
- Random matrix models
- Channel covariance
- Diversity techniques
- Channel capacity

Motivation
- Understand how channel influences communications
- Learn most important terms for research in this area
Course Organization
6. Applications / Research (2 weeks)

MIMO
 Space-Time Coding
 Alamouti Scheme, VBLAST

Reconfigurable Antennas
 Antennas whose properties can be dynamically changed / tuned

Radio Frequency Identification (RFID)

Ultra-Wideband Systems (UWB)

Motivation
 See recent advances / uses of antennas
 Get better picture of complete system
Conclusion

Antennas and Propagation

Still an important area of research / development
Course gives basic tools to be proficient in this area